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FOREWORD 5

This report gives the results of an investigation of aliasing in the data I
from conductivity/temperature/depth (CTD) instruments used by the Naval
Oceanographic Office (NAVOCEANO). The U.S. Navy Fleet requirements for
environmental data presently are supported through measurements made with the I
CTD. Investigation was undertaken to determine what errors could be expected in
survey data products due to aliasing in the CTD data.

This effort was performed under a contract awarded to Triton Systems, Inc.,
of Pass Christian, MS. Dr. Ernest L. Burdette was the principal investigator
for Triton Systems. The empirical data used in the analysis were obtained
using the unique facilities and specialized techniques developed in the I
Engineering Department of NAVOCEANO.
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1.0 INTRODUCTION

1.1 BACKGROUND

U.S. Navy requirements for environmental data presently are supported

through measurements made with a conductivity/temperature/depth (CTD)

instrument. Data products are developed from the CTD data. A typical

example is salinity, a function of all three measured parameters.

The instrument used by the Naval Oceanographic Office (NAVOCEANO) is the

Mark IIIb CTD manufactured by Neil Brown Instrument Systems, Inc. (NBIS).

Data are acquired by operating the CTD in an over-the-side downcast mode.

The standard profiling deployment rate for the instrument is 1 m/s. Time

series data are digitized at a rate of approximately 32 ms per sample of

pressure, temperature and conductivity. This corresponds to a spatial

sampling rate of approximately 31.2 samples per meter (0.032 m between

samples) in the vertical direction. Standard data products are obtained by

applying a low-pass filter to the vertical data sequence, followed by

sub-sampling at 1 sample per meter. This approach is followed for directly

measured parameters, such as temperature and conductivity, as well as com-

puted parameters such as salinity.

The Nyquist criterion for the spatial data sequence states that a vertical

sampling frequency of 31.2 m-1 is adequate to resolve spatial frequencies

as high as 15.6 m-1 . This is equivalent to resolving wavelengths greater

than 0.064 m. The vertical dimension of the NBIS conductivity cell is

0.03 m which should approximate the spatial resolution of the sensor.

Thus, it is clear that the spatial resolution of the sensor is apprnxi-

mately two times that specified by the Nyquist criterion for the given

sampling rate.
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As this simplistic analysis demonstrates, the present 1-m-1 data products

are an order of magnitude poorer in resolution than is dictated by the fun-

damental limitations of the sampling rate and the NBIS CTD conductivity

cell resolution. However, due to other characteristics of this instrument, m

at least two barriers to higher resolution data products exist.

One well-known problem is created by mismatching of the time response

characteristics for the conductivity and temperature transducers. Changes

in temperature and conductivity are measured with different responses, the m
temperature circuitry responding more slowly than conductivity. If these

changes are of the same order of magnitude in duration as the response

times of the sensors, the computed salinity will temporarily overshoot the

correct value, producing a transient but relatively large error in sa- 3
linity, termed a salinity spike. Several methods exist for correcting

salinity spikes, including: m

1) Electronic correction by attempting to match physically the time

responses of the temperature and conductivity transducers; m

2) low-pass filtering of the temperature and conductivity data to

remove the high frequency spikes in computed salinity as is done 3
in the operational data; and

3) numerically filtering the individual temperature and conduc-

tivity data sets to correct for the time response of the

respective transducer.

The third method theoretically has the potential for producing the most

accurate results and for retaining a relatively larger amount of high fre- -
quency information as required for improvement of resolution. It has the

disadvantage of requiring accurate knowledge of the transducer transfer

function, including both amplitude and phase.

I
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A second potential problem is presented by sampling of CTD transducers at

a frequency of approximately 31.2 Hz without prior filtering to eliminate

high frequency information. Aliasing occurs when frequencies greater than

one-half the sampling frequency are present in the digitized analog signal.

Thus, if either transducer is capable of responding to frequencies higher

than approximately 15.6 Hz, the potential exists for data at lower

frequencies to be contaminated by the aliased high-frequency data. The

nature and extent of the potential aliasing problem can be addressed

only if the transfer functions of the transducers are known.

The transfer function of any device may be determined by obsc-ving the

response of the device to known inputs, provided that the input contains

information covering the entire range of frequencies of interest. One

common method is to apply a step function as input, since a time domain

step is composed of an infinity of frequencies. This method is

described in some detail in Section 2.4.

The NAVOCEANO Maintenance Engineering Division has developed a laboratory

test to determine time responses of the individual NBIS CTD transducers.

The test, described in Section 2.1, subjects the transducers to step

changes in temperature and/or conductivity by dropping the sensor through

a stratified layer, while acquiring digitized data from the CTD via

normal means. Data digitized at the normal 31.2 Hz sampling frequency

are Nyquist limited to approximately 15.6 Hz.

NAVOCEANO has modified selected units to acquire data from a single

channel, either temperature or conductivity, at approximately 93 Hz.

Frequency-domain analysis of step-response data acquired at this higher

rate provides a determination of transducer response up to the Nyquist

limit of 46.5 Hz. This should be adequate to evaluate performance over

the frequency range of the normal CTD data, 0 to 15.6 Hz.

3
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A consequence of the modification to enable high-speed sampling of a

single channel is that data are sampled at unerual time intervals, while 3
conventional spectral analysis techniques require that data be sampled at

equally spaced times. Equally spaced time series could be acquired for 3
the purposes of this investigation by developing specialized instrumenta-

tion at a significant cost. However, it was decided that the objectives

of this investigation could be satisfied by analysis of readily available I
unequally spaced step response data.

1.2 OBJECTIVE

The CTD Data Aliasing Investigation was undertaken in order to determine

if aliasing from the NBIS Mark IIIb CTD may, in fact, represent a problem

to present or future operational data requirements. Existing laboratory

testing techniques and data acquisition equipment employed made the 3
investigation possible at minimal cost. I
The specific objectives of the investigation may be summarized as follows:

1) Adapt or develop means of determining the transfer function of a m

sensor from unequally spaced time series data,

2) Using data acquired by NAVOCEANO in laboratory tests, determine

the transfer function of the NBIS Mark IIIb temperature and I
conductivity sensors,

3) Based upon these experimentally determined transfer functions, I

determine the nature and extent of aliasing in CTD data acquired

at 15.6 Hz, 3
4) Quantify the effect of aliasing on the accuracy of measured data,

and 3
5) Attempt to extend the accuracy conclusions to a typical data

product, such as salinity.

I
I
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2.0 APPROACH

The initial activity of the investigation was a survey of available

literature to identify techniques for analysis of unequally spaced time

series data, with emphasis placed on techniques for estimation of the

spectrum. As a result of the literature survey, a spectral estimation

technique was identified, and this technique was adapted for use in the

study.

Individual conductivity and temperature time series data sampled at a

nominal rate of 93 Hz were obtained from laboratory response tests per-

formed at the NAVOCEANO environmental test facilities. These step

response time series were processed into individual spectra which were

then averaged to obtain mean conductivity and temperature spectra.

The amplitude portion of the sensor transfer function was then obtained

from the respective mean spectrum.

By assuming a spectral form for the data input sampled by the sensor, it

was possible to predict the frequency domain response of the sensor to

that spectral form over the bandwidth 0 to 46.5 Hz. From this res'ponse,

the spectral effect of aliasing within the more limited operational data

bandwidth, 0 to 15.6 Hz, could be quantified. The aliasing effect on

both sensors was examined for two spectral form models. The effect of

error due to aliasing was also extended to the estimation of variance

in the conductivity and temperature data.

The error in computed salinity was approximated by a linear first-order

form involving the errors in temperature and conductivity. Based on

results obtained for the individual sensed parameters, a numerical ap-

proximation for the error in salinity was used to quantify the effect of

aliasing upon the accuracy of the salinity data product when spatial

resolution is extended beyond the present 1-m level.

A detailed explanation of the approach taken for each stage of the

investigation is provided in the remaining portions of this section.

5



2.1 SPECTRAL ANALYSIS OF UNEQUALLY-SPACED TIME SERIES

A literature survey, undertaken to identify the present state of knowledge i
concerning techniques of spectral estimation from unequally spaced time

series, produced several valuable references. Three different spectral 3
estimation approaches were identified:

1) Prediction and/or interpolation to synthesize missing data I
samples, making an unequally spaced sequence into a uniformly i
sampled one which may then be processed by conventional methods,

2) Analysis of unequally spaced sequences when sampling instants

are known, and

3) Spectral analysis when sampling instants are unknown, but

statistics of sampling times are known.

A brief description of the significant references for each approach is

provided below.

Results of Literature Survey U
Bowling and Lai1 have applied a linear prediction algorithm to fill gaps 3
of missing data in an unequally spaced sequence. The technique produces

spectral estimates which are consistent with the data observed. The 3
authors provide listings of programs which perform extrapolation and

interpolation, as required. I

Ackerman 2 has investigated non-uniform sampling as a means for reducing

odd harmonic terms in the correlation function of clipped signals. These 1

arise due to synchronism between the periodicity of uniform samples and

the periodicity of odd signal harmonics produced by clipping. Sampling 3
times must be known in order to compute the correlation function from

non-uniform samples.

I
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Jones3 reported a spectral estimation technique using unequally spaced

observations taken at known times. It is assumed that the time intervals

are not multiples of some real number, since this case may be treated as
missing data points in a uniformly sampled time series. If x v represents

the complex value sampled at time t while x* is the complex conjugate
V V

value, the spectral estimate is

n n 27ri(t V - t )f
s IfI W x x* e

V=1 V=1 1P 4

where w are real weights satisfying

W =W

Weight functions are developed for three special cases:

Poisson sampling, random sampling, and ordered time differences.

A Fourier-series approach has been adapted by Singleton and Larson4 to

obtain a spectral estimate from an unequally spaced time series with

known sampling times. The case of random timing is considered.

Masry5 has developed a method for estimating the spectral density function

when the times of individual samples are not known. Consideration is re-

stricted to a stationary Poisson point process wherein samples are acquired

at times

t = 0, ... tn = tn + Tn ... , n =1,2,...

with the Tn independently distributed random variables possessing an

exponential distribution

F(x) = 1 - e- x

where a is known. The spectral estimate is obtained by weighted series

expansion of the discrete covariance function associated with the

sampled data sequence. The expansion is constructed from a basis set

of modified cosine functions. A class of exponential-type weight functions

is shown to be acceptable from the point of view of series convergence.

7



i
A procedure for estimating sinusoids in a background of noise with known m
spectral content but unknown total power has been reported by McClellan 6 .

This maximum entropy method is extended also to multi-dimensional signals.

Shaw 7 considers the effect of processing data acquired in a non-uniform

fashion as though they were sampled uniformly. He shows that such treat-

ment introduces a non-negative error component into the power spectrum.

The spectral error is expressed as a function of the true power spectral U
density (PSD) of the process and the variance of the timing errors. The

result is a powerful one since it enables a bound to be placed upon the

error of spectra obtained by processing non-uniformly sampled data via

standard FFT-based time-series analysis methods. 3

Since Shaw's approach minimized the amount of additional software required 3
for analysis, this method was adopted for computation of error bounds on

all power spectra utilized in the CTD Data Aliasing Investigation. The 3
method is summarized below for the sake of completeness.

Conventional Spectral Analysis Using Non-Uniform Samples m

For the purposes of conventional time-series analysis, a stationary,

random process, x(t), is sampled at points spaced uniformly along the time

line to produce a discrete sequence of samples, x(i A t) xi.* If, due

to error in the sampling procedure, samples actually are acquired at other

times, producing a sequence x(i A t + ei) which is treated subsequently as

uniformly sampled, the error is introduced into the spectral estimate for

the process. The derivation of an expression for the spectral error is

presented in some detail by Shaw 7 . A summary of the major steps follows.

*Jenkins and Watts8 provide the following description: "Qualitatively, a 3
stationary series is one which is in statistical equilibrium, in the sense
that it contains no trends, whereas a non-stationary series is such that
its properties change with time." 5

83



It is assumed that the individual position or timing errors, ei, also

referred to as "Jitter", are small compared to At. Under this condition

we may obtain an expression for the non-uniformly sampled sequence as a

perturbation of the process x(t):

h(t) = x(t) + e(t) - ax(1)at

Equation (1) assumes that x(t) is differentiable, a condition which should

readily be satisfied for a real-world physical process such as temperature

or conductivity.

The autocorrelation functions of the process h(t) is

a2

Rhh(T) = Rxx(T) - Ree(T) - Rxx(T), (2)

where Rxx and Ree are autocorrelation functions of the processes, x(t) and

e(t), respectively. The power spectrum of h(t) is obtained by Fourier

transformation of Eq. (2),

Sh(f) = Sx(f) + Se(f) * {(2 7r f)2Sx(f)} ,  (3)

where Sx and Se are the PSDs for x(t) and e(t), respectively, and * means

convolution.

The second term in the RHS of Eq. (3), a frequency domain convolution,

represents the error component in the computed PSD when non-uniformly

sampled data are treated as uniform samples. An expression for the error

term is derived for the case of stationary jitter.

9
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Recall that the process x(t) is sampled at times
ti = i A t + ei , (4)

where ei represents the jitter in the ith sample. The ei may be thought

of as discrete samples of e(t), a stationary, zero-mean process. Further,

assume that the variance of e(t) is well approximated by 3
2 N e 2  (5)
e = 1 =1 e

Then, the autocorrelation function of the continuous error function,

e(t), is

Na 2  I
R (Noe 1 1 61T- (1 - _L _) } (6)

ee(T) T T

for ITI < T, m
where

N = number of samples in the sequence and m

T = N A T = length of sample sequence. I
The PSD for the error function is then

2 1
Se(f) = No e 2 6(f - nAf) (7)

nN n
n=-00

The error term in Eq. (3) becomes AS(f) = Se (f) * {(2wf)2Sx(f)}

Noe2 1 2 (f - n~f)2  Sx(f - nAf) (8)
nO n X

However, since a power spectral density function computed by means of

an FFT is discrete with frequencies k A f, Eq. (3) will only be evaluated

for f = k A f. Hence, Eq. (8) will, likewise, only be evaluated

I
I
I
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for the same discrete frequencies. Substitution for f in eq. (8)

together with the change of variables j = k-n yields an error term
0e2 2

AS(kAf) e Sx (jf) (9)

where

T NAt

Note that the error term is a weighted summation over all frequencies

of the true power spectral density of the process x(t).

Equation (9) demonstrates that the exact PSD obtained by processing non-

uniformly sampled data as uniform may be predicted if the true PSD of

the process and the variance of the jitter are known. This investigation,

however, posed an inverse problem: Given a spectrum obtained by conventional

processing of unequally spaced data, Sh(kAf), what is the true spectrum

of the process? The true PSD may not be calculated directly but may be

bounded in the following fashion.

From Eq. (3), we know that

Sh(kAf) > Sx(kAf) (10)

Assume that,

Sh(kAf) = S (kAf) (11)

Then, substituting into Eq. (9), we have

AS'(kAf) = N t-)-  Sh(JAf) (12)
N~t 2 j#k

11
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Now from (10)

AS'(kAf) > AS(kAf) (13) 3
Then

Sh(kAf) < Sx(kAf) + AS'(kAf) (14)

or

Sx(kAf) Sh(kAf) - AS'(kAf) (15)

We define

S x I(kf) = Sh(kf) - AS'(k~f) (16)

Then, from Eq. (15), Eq. (16) and Eq. (10), we have 3
Sh(kAf) . Sx(kAf) >S x (kAf) (17)

Equation (17) allows upper and lower bounds to be established for the

spectrum of the true process, x(t). Required for calculation of upper

and lower bounds are: (1) a spectral estimate obtained by processing

the time series in conventional fashion as though it were equally 3
spaced,and (2) the variance of the timing errors.

I
I
I
I
m
I
I
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2.2 DATA ACQUISITION

The laboratory procedure which produced the data sets analyzed for this

report was developed by NAVOCEANO for routine measurement of CTD sensor

response functions. A summary description of the test procedure is pro-

vided here for the sake of completeness; (Mayoral, 1982) provides a more

detailed description.

Essential to the procedure is a stable and well-defined artificial

thermocline which is created in a precision environmental test facility

operated by NAVOCEANO. The thermocline consists of two homogeneous,

horizontal water layers of different temperatures, separated by a gradient

layer less than 1 cm in thickness. The stability of the thermocline and

the dimension of the gradient layer have been investigated by Paige. 10

The upper layer typically is maintained at a temperature approximately

0.50C higher than the lower layer. The two layers are of approximately

equal salinity so that the conductivity difference between the two layers

is approximately 0.7 mS/cm.

The arrangement of the laboratory apparatus is such that the sensors drop

through the thermocline at a rate of approximately 0.75 mis, near the

operational deployment rate of 1.0 m/s. In the process, a pseudo-step

change in temperature and conductivity is sensed by the CTD sensors.

Digitized time series of each transducer output are produced by the

instrument and these are recorded under computer control for subsequent

analysis to obtain the transducer response function.

Standard Data Sampling

In normal operation, the Mark IlIb CTD produces one scan of each of the

three measured parameters -- pressure, temperature, and conductivity --

on a nominal 32-ms timing cycle. The equivalent sampling frequency is

31.25 Hz. Each analog sensor signal is digitized to 16 bit accuracy using

a successive approximation scheme. Sampling resolution for each of the

parameters is, respectively: pressure, 0.1 dbar, temperature, 0.0005*C,

and conductivity, 0.001 mS/cm.

13



1
The analog to digital (A/D) conversion scheme is implemented in an adap-

tive fashion so that conversion requires the minimum time consistent with I
error free operation. The digitizing time for each bit may be as short as

0.3 ms or as long as 1.6 ms. Start of digitization of the pressure signal 3
is synchronized to the 32-ms timing signal. However, subsequent sensors

in the scan, temperature and conductivity, are digitized at varying times 3
after the start of the scan, depending upon the time required to digitize

the preceding parameters.

Figure 1 is a time series plot of temperature obtained from a response

test of an instrument operating in the normal mode, i.e., sequential

sampling of pressure, temperature, and conductivity. Figure 2 is a time

series plot of conductivity obtained during the same test. The difference

in response times of the two sensors is apparent in a comparison of the

two curves. A time series of salinity was constructed by applying the 1

standard salinity algorithm'1 to corresponding pairs of temperature and

conductivity data from this response test. The salinity time series is 3
shown in figure 3. The transient decrease in salinity, as the sensors

cross the thermocline, is typical of the "salinity spike" which appears as I
an artifact in uncorrected salinity time series data obtained with the

Mark II1b CTD. 3

High-Speed Sampling

In order to address the subject of aliasing in data sampled at 31.25 Hz,

it is necessary to evaluate data which are digitized at a much higher

rate. To this end, NAVOCEANO has modified a Mark IlIb CTD to acquire data 1

from a single sensor at three times the normal sampling rate. This modi-

fication replaces the sensor inputs to each of the other two analog 3
channels by the single sensor to be sampled. For example, if the conduc-

tivity parameterwere to be sampled at a high rate, analog-input select 3
lines for digitizing pressure and temperature measurements each would be

changed to select conductivity. Conductivity then is sampled successively

three times in a single instrument scan. Since only the start of each

scan is synchronized by the CTD sampling clock, the second and third

samples are converted at times which vary slightly from scan to scan, but

all are contained within a 32-ms scan interval.

I
14 U
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I

The average sampling frequency, however, is three times the normal rate.

For the particular CTD used in these tests, the scan period of the

data-sampling clock was measured at 31.9986 ms. The equivalent sampling

frequency is 31.25 Hz for standard sampling, while the average frequency

for high-speed sampling is 93.75 Hz.

Data Description

Two sets of high-speed data were acquired for use in this investigation.

The initial set consisted of five response tests digitizing conductivity I
only and five tests digitizing temperature only. Preliminary analysis

of the first data set revealed essentially no variability between the 3
five temperature response tests. Such was not the case for the

conductivity data and so a second set of data was acquired. Twelve 3
additional response tests were made digitizing conductivity only. Both

the initial and second data sets were acquired using the same CTD and

sensors.

Figure 4 is a time series of temperature acquired at 93.75 Hz, while I
figure 5 is a time series of conductivity. For the purpose of plotting,

it was assumed that the data samples were acquired within a scan at

intervals of 10, 10, and 12 ms, respectively, rather than at equal

intervals. Some irregularity is evident in the step region of the

curves, particularly for temperature (fig. 4), demonstrating the

irregular sample timing characteristic of the high data rate. Plots

of all high-data-rate response-test time series used in this study

are presented in Appendix A.

I
I
I
I
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2.3 ANALYSIS OF TIMING ERRORS

As indicated in Section 2.1, bounds may be established for the spectrum

of the CTD step response computed from high-speed data if the variance

of the timing errors is known. The time of acquisition of both the second

and third samples in a high-speed data scan is dependent in each case

upon the time required to convert the previous sample. 12 Therefore, the

timing errors and their statistics are data-dependent quantities most

accurately measured under conditions which produce the actual response-

test time-series themselves. A technique devised for measuring the

timing-error variance, based on this concept, is described below.

Evaluation of the first set of response-test data showed that sensor

response to the pseudo-step function input of the tests approximated

the classical exponential decay curve, as can be seen in figure 4 and

figure 5. An exponential response to a unit amplitude step is shown for

comparison in figure 6, where the mathematical form of the curve is

1 t < to
x(t) = , (18)

e- 0to, t > t0

where a is the time constant for the exponential decay, and t0 is the

time corresponding to the start of the step input.

Since a plot of the logarithm of x(t) vs. t is a straight line, comparison

of measured data values to an exponential decay is simplified by plotting

the measured parameter vs. time in logarithmic form. Figure 7 is a plot

of a hypothetical time series such as might be encountered in either the

conductivity-or temperature-response-test data when plotted as though

acquired at regular intervals. If the data values are truly those of

21
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1

an exponential response process, then it may be assumed that any deviation I
of a measured value from the straight line is due to an error in timing

and not in the measurement of x(t) itself. As will be seen, the actual 1

sensor responses are not simple exponentials. However, the exponential

model provides worst case values for the timing errors, since it also

includes the residuals to the exponential fit.

The timing error for the ith point, ei, is given by the difference between I
the assumed time for equal spaced sampling,

ti = i A t, (19)

I
and the sampling time which corresponds to the ordinate of the ith data

value

ti= to I In xi (20)a 
I

orm

eij= ti- •ti 
(21)

The variance of the timing error is then given by m

Ce 2  1 (ei-) 2  (22)
i=1

where e is the mean of the timing errors. However, determination of the I
ei is possible only if the constants a and to are known for the particular

response test. I
The response constants were determined for each individual test sequence

in a three-step process. First, data were normalized to a unit amplitude

step based upon the difference between stabilized "before" and "after"

values ascertained from the two equilibrium portions of the response curve. I
The normalized data were then plotted in logarithmic form, assuming an

equal sampling interval. This enabled selection of a subset of the data

I
24m
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sequence which most closely approximated an exponential response.

Finally, the subset of the data sequence was fit to an exponential by

actually fitting the logarithm of the parameter to a linear form

t = t0 + Oy, (23)

where

8 = -I

and

y = In x

using traditional least-squares methods and assuming all error to be

associated with the parameter t.

Temperature response was found to be closely approximated by the exponen-

tial decay, so that the data subset chosen for analysis typically included

fourteen to eighteen points beginning immediately after the step (at time =

t in figure 6). Conductivity was seen to be more complex in its response

to the step change, exhibiting two distinctly different behaviors within

the same data set. A rapid exponential decay characterized the early

stages of the response curve, so that the first seven to nine points following

the break were well represented by the exponential. This was followed by

a clear change in the logarithmic curve to a less steeply sloped line

which was somewhat less linear and less consistent in slope from test to

test. The physical significance of this change is not immediately obvious.

It is apparently a consequence of a complex fluid flow pattern caused by

the shape of the conductivity cell. 13 From the point of view of potential

aliasing, the more rapid response is of greater concern, since rapid

response in the time domain suggests greater response to high frequency

inputs and therefore greater susceptibility to aliasing. Furthermore, any

subset will be valid if the process causing the jitter is truly stationary.

This being the case, attention was focused upon the steeper portion of the

curve, and the constants a and t0 for the conductivity response were

determined by fitting to this subset. This region typically comprised

the first seven to nine data points following the initial break at time

to.

25



m
2.4 TRANSFER FUNCTION DETERMINATION

A continuous, real function, x(t), such as the physical input to a sensor

or its analog voltage output, possesses a complex Fourier transform, X(f), I
given by

X(f) = f.. x(t)el i  tdt • (24)

The function x(t) may be recovered from X(f) by the inverse transform

x(t) = f. X(f)ei2wftdf (25) I

The frequency-domain transfer function of a sensor or other measurement m
process relates the input and output of such a device. If xI(t) and x2(t)

are, respectively, the input and output to the measurement process, the

Fourier transforms are related by

X2(f) = T(f)Xl(f), (26) I
where T(f) is the transfer function for the process, in general a complex

quantity. The value of knowing the transfer function for a sensor and

particularly the importance to this project of knowing the CTD sensor

transfer functions has been discussed previously in Section 1.1. A means

for obtaining these transfer functions is described below.

Determination of the Transfer Function From a Step-Function Input m

From Eq. (26) we have

X2(f)

T(f) = Xl(f) (27)

X1(f)

26



If the input function applied to a sensor is a unit step function

1 t <0

x1(t) 1 t = 0 (28)

10,t>O,

or, following the notation of Bracewell 14,

x 1(t) = I - H(t) (29)

where H(t) is the Heaviside step function, a measured response

x2(t) = o X2(f)ei27ftdf

f-, T(f) X1(f)ei2Tftdf (30)

will be produced.

If, on the other hand, the measured response, x2(t), to an input of the

form of Eq. (29) is transformed to obtain X2 (f), then the transfer function

may be readily determined from Eq. (27) where

X1 (f) = f_ (1 - H(t))e' i21Tftdt . (31)

Expanding, we have,

X 1(f) = ef. e-i 27ftdt - .' H(t)e ' i 27ftdt . (32)

27
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The integrals may be evaluated separately. After Bracewell 14

f'. ei 2 7rftdt = 6(f) (33)

and I

.r H(t)e' 2 ftdt = 6(f) - i . (34) 1

Combining, we obtain

X1(f) = 6(f) - ((f) - i(2-f) ) 3

-.(6(f) + i(- ) ) (35)3

By substituting Eq. (35) into Eq. (27), we obtain 3
T~)= X1I

T(f) X2 (f) (6(f) + i(1))m

T
(36)m

= -27rifX 2 (f) 

(

I

In summary, if the response of a sensor to a unit step-function input is m

measured and its Fourier transform, X2 (f), computed, then the sensor

transfer function, T(f), may be readily computed using Eq. (36).

I
m
I
I
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Computation of the Step-Response Spectrum

The power spectrum of a continuous function is related to its Fourier

transform by

Sx(f) = X*(f) X(f), (37)

where X* is the complex conjugate of X(f), the Fourier transform

of x(t), as defined by Eq. (24). In this definition, x(t) is defined for

all t and, likewise, X(f) is defined for all f in (--, -). s x(f) is

often referred to as the two-sided spectrum, since it is defined for both

positive and negative f and since

S x(-f) = Sx(f). (38)

We are only concerned with the spectrum for non-negative f, and therefore

make use of the single-sided spectrum

Sx (f) = 2sx(f), (39)

defined on (0, -).

A corresponding spectral-density function may be computed for a discrete

time series of finite length, consisting of N samples acquired at times

&t apart. The equivalent of the single-sided spectrum for such a time

series is termed the periodogram and is given by

P (kAf) = Nt X*(kAf) X(k~f), (40)

29



I

where X(kAf) is the discrete Fourier transform of x(jAt) given by

X(kAf) A At I x(jAt)e - 2'Ti ( 'N ) (41)

all j

j = 0, 1, N, k = 0, ... ,,2 3
and Af

NAt

However, the periodogram is not the best estimate in the statistical

sense,of the spectrum.8  Welch 15 has described a procedure for obtaining

a statistically stable spectrum by dividing a time series into L equal

length segments, computing the periodogram of each segment, and averaging

the periodograms to yield

I L
S~ ~ x kf =- P (kAf) (2

The periodograms are treated as independent samples of the same process. 3
The averaging indicated by Eq. (42) is referred to as an ensemble average

since the L segments taken together form an ensemble of realizations of 3
the process under consideration.

The frequency resolution of the spectral estimate, Sx (kAf), given by m

Eq. (42) is

= N (43)

where Ns is the number of samples in a segment. Since the discrete

time series acquired from the CTD step response tests were short in

length (on the order of 400 ms), division into segments would have

m
I
I
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resulted in a coarse frequency resolution for Sx, In order to achieve

the maximum possible resolution, each response-test time-series was treated

as an independent realization of the sensor's response to the same step

change input. Periodograms for all conductivity response tests were

computed and averaged to obtain a conductivity response spectrum via

Eq. (42); a temperature response spectrum was obtained in the same way.

Computation of the Periodogram

Computation of the periodogram of the step response function was performed

by treating the high-speed time series data as though they were equally

spaced in the following manner. A subset of thirty-two consecutive samples

was selected from the original forty-plus available samples, taking care to

center this subset so that both upper and lower levels of the step were

present. The datza were then normalized to a unit step in the manner

described in Section 2.3. Using the method described by Blackman and

Tuckey 16 , a linear trend was removed from the time series, the trend

having been determined by fitting a linear form to the original data.

For high speed CTD data, the average difference between samples,

- = x(( Ns-1) " At) - x(O), (44)
N-1

was used to estimate trend,

-(N s- 1

(j) (j - (A)) • (45)

Each sample in the sequence was then corrected for this trend as well

as any offset in the sequence to obtain a corrected time series

Xc(JAt) = x(jAt) - T(j) - x , (46)

31



where the offset is

1 Ns -1
N j=O x(jLt) (47) 3

A discrete transform of the corrected time series was computed using a

32 point fast Fourier transform (FFT) routine due to Brenner17. The

routine computesNs_1 I

F(kAf) = Xc(J t)e (48)j=0 c

for k 0, ... , -I. Then from Eqs. (40) and (41) the periodogram is

P (kf)t F*(kf) F(kAf) (49)
x Ns

and a power spectrum is computed by averaging the periodograms of L

different response tests using Eq. (42).

II
I
I
I
I
I
i
I
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Transfer-Function Estimation from Unequally Spaced Data

Recall that in Section 2.1, Shaw's method was applied to obtain bounds

on the power spectrum of a process when unequally spaced time-series data

are processed via a discrete Fourier transform into a spectral estimate.

To consider the effects of aliasing, it is not necessary to have phase

information from the transfer function, T(f), and, hence, it is sufficient

to know only the amplitude, IT(f)I or equivalently the power transfer

function IT(f)l2

From Eq. (36), we have
2 2*

T(f)T(f) = IT(f)I 2  = (2irf) X2(f)X2(f) (50)

In discrete notation, substituting for X*(f)X 2 (f) from Eq. (40), we have

2~ ~ 2~ ~tf

IT(kAf)1 2  = f 2 • NsAt P x (51)

Since the best estimate of P x(kAf) is the ensemble average, the

estimation of the power transfer function is

jiT(kf)1 2  = (27f)2 Nt S x(ktf) (52)

But, we may also show that

lkfi2 = 1 L 2

ii(kAf) - IT(kAf)Iz (53)
Z=1

where IT(kAf)I,2 is computed from P via Eq. (51).
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Aside from the statistical problem of spectral estimation using discrete m
data, which has been dealt with through ensemble averaging, an additional

problem exists in that it is not possible to estimate the output spectrum, I
S2(f), directly due to the unequal spacing of data. However, it is

possible to place bounds on S2(f) using Eq. (17). Extending this bounding 3
concept to the transfer function, we have

JTh(kAf)j > IT(kAf)I > IT'(kAf)I, (54) 1
where ITh(kAf)Iis the transfer function computed from the transfer m

function estimate of the unequally spaced data,

fTh(kAf)l = F (k~f)2 (55)

and

IT'(kWf)l = (JT(kAf)1 2  - 2NsAt( kAf)2ASx(kAf))i (56) 1
with 3

2

ASx(kAf) = e (_L) 2  
x (l Af )  (57)

NsAt2 l k "

To summarize, we determine the conductivity-sensor transfer function in m

the following way: The periodogram of each conductivity response test is

computed, treating the high-speed sensor-output time series as though the 1

data were equally spaced. Then, periodograms of all conductivity tests

are averaged to obtain an estimate of the step-response spectrum which is 1

used in Eq. (54) to place upper and lower limits on the true transfer

function of the conductivity sensor. Limits for the temperature-sensor

transfer function are obtained in a corresponding fashion.

II
I
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2.5 EFFECT OF ALIASING UPON SPECTRAL DATA

In Section 2.4, the relationship between input and output of a sensor

was described in the frequency domain. Extending this concept to the

power spectrum, we have

S2(f) = JT(f)J 2 S1(f) (58)

where S1(f) and S2(f) are, respectively, the power spectrum of the physical

process being measured and the spectrum of the sensor output signal.

In compensating for the transfer effect of a sensor in the frequency

domain when discrete calculations are employed, the measured spectral

estimate is corrected

S1(kAf) -IT(RAf) 2 S2(kAf) (59)

to obtain an estimate of the spectrum of the physical process. While

Eq. (59) is mathematically correct for all frequencies in S2(kAf), in

practice it may not be used for frequencies at which IT(kAf)! becomes

small. This is because errors in the measured spectrum which occur as

a result of the discrete spectral-estimation process and instrument noise,

as well as uncertainty in the transfer function itself, are greatly

magnified. Figure 8 shows a hypothetical sensor and the relationship

between its input, the transfer function, the measured spectrum, and

the corrected result.

Aliasing

When a continuous time signal is digitized into discrete samples taken

at times 4t apart, a discrete transform (and a periodogram) of the time

series may be computed using Eqs. (40) and (41). However, these frequency-

domain functions are defined only for discrete frequencies up to the

Nyquist frequency

f fs= (60)
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Power Spectrum of Input Signal, SI(f) 3

(a) I
I II l

Sensor Power Transfer

Function, jT(f)j 2

(b)I I
I1I

Spectrum Measured
by Sensor, S2(f)

(c)

I

Corrected Spectrum
S2(f)

IT(f)1 2  I(d)

Frequency

Figure 8. Comparison for a Hypothetical Measurement.
(a) sensor input, (b) transfer function, (c) measured spectrum,
and (d) corrected spectrum.
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If information is present in the continuous time signal at any frequency

greater than fN, the power spectral density (PSD) associated with such

information will appear in the discrete spectrim at a frequency

k~f = 2fN - f' (61)

if fN < f ' < 2fn and

k~f = f" - 2fn (62)

for 2fN < f" < 3fN. Comparable relationships exist for frequencies higher

than 3fN.

Figure (9b) shows the effect of aliasing in the hypothetical measured

spectrum of fig. (8c) for a specific Nyquist frequency as shown. Note

that since no information is present in the spectrum of fig. (8c) above

2fN, then only Eq. (61) will apply in predicting aliasing. The broken

line shows the spectrum as it would have appeared without aliasing.

Figure (9a) repeats the measured spectrum from (8c), while fig. (9c) shows

the effect of transfer correction on the aliased spectrum. Again, the

broken line represents the corrected spectrum as it would have appeared in

the absence of aliasing.

Aliasing in the Power Spectrum Quantified

As may be seen from the foregoing discussion, when a continuous physical

signal is sensed and digitized, the potential for aliasing exists.

However, aliasing will occur only if: 1) information is present in the

signal at frequencies greater than the Nyquist frequency, and 2) the

sensor response function is non-zero at these frequencies. In order to

quantify the effect of aliasing, it is necessary to know both the transfer

function and the true spectrum of the measured process.
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Spectrum Measured

by Sensor3

(a)

I

Discrete Spectrum

with Aliasing

(b)I

Corrected Discrete

Spectrum with Amplified3
Error

I
(c)

I
Nyquist FrequencyI

Figure 9. Effect of aliasing on the discrete spectrum. Broken line

shows spectrum without aliasing from higher frequencies. Hypothetical

spectrum from Figure 8c is used.
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When aliasing occurs, the measured spectral estimate includes terms from
higher frequencies in addition to the fundamental term which is desired.

The aliased spectral estimate is

iS2(k~f) = S2(kff) + S2 (f') + S2(f") + ... , (63)

where f, f", ... represent frequencies from which aliasing has occurred.

From Eq. (63), substituting for f and f" from Eqs. (61) and (62), and

substituting for S2 from Eq. (59), we have

S2(k~f) = li(kAf)I 2S1(kAf) + li(2fN-kAf)I2Sl(2fN-kAf) +

(64)
+ IT(kAf - 2fN)I S1(kAf - 2fN) +

If this aliased spectral estimate is treated as an accurate one and is

corrected for the sensor transfer effect at the frequency kAf to obtain

an estimate of the input spectrum, as in Eq. (59), we have
j,^iT(2f Nk~f)1 2

Si(kAf) = S1(kAf) + 2(1kAf) S(2fN kAf) +

2 (65)
IT(kAf - 2fN)12

+ 2  S1(kAf - 2fN) +jT(kAf)l 2

Because the spectral estimates are non-negative for all frequencies, the
corrected spectral estimate will be biased larger due to the aliased

spectral density by an amount

A(kAf) = S1(kaf) - Sl(kAf) . (66)
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Whether this bias creates a significant error in the estimated PSD depends

upon the relative magnitudes of S1(k f) and Ak f). The relative error

within a frequency band is then

Es(k~f) = A(kf) (67) 1

SI(kAf)

Because only the LHS of Eq. (63) is produzed as a result of the digitiza-

tion and spectral analysis, it is impossible to know the amount of error

which will be introduced by the higher frequency terms in any given

circumstance. Various techniques are available to prevent contamination

of a measurement by aliased data, but a discussion of these is beyond the 3
scope of this investigation. If none of these techniques is applied to

the CTD data, then aliasing may occur. It is possible to gain an 3
understanding of the magnitude of the problem by assuming a form for the

measured spectral estimate Sl(kAf). In fact, a quantitative prediction of

ES(kAf) may be made if we assume that the input spectrum takes some spe-

cific analytical form, a(f), when f is one of the discrete frequencies

present in the spectral estimate. The relative error is then m

IT(2 fN-kAf) 2  
_(2fNkAf) +

EIs)(kAf) 2 (kAf)

(68)

IT(kAf-2fN)l2  a(kAf'2fN) 1
+ (k~f)I 2  a(kAf)

+ .. " I
I
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Error in Variance Estimation Due to Aliasing

Parseval's energy theorem 18 permits the variance of a time series to be

estimated from the power spectrum, assuming that the time series satisfies

those properties which enable the spectrum to be estimated in the first

place, i.e., stationary, zero-mean process. Then

2 = Af Sx(kAf) . (69)
all k

Equation (69) shows that the power spectrum of a time series, here ap-

proximated by its spectral estimate, is, in fact, a spectral decomposition

of the time-series variance. This fact is useful, enabling the contribu-

tion to variance of specific frequencies in the spectrum to be estimated

by summing Sx over just those frequency bands of interest.

Furthermore, conductivity and temperature time series are routinely

low-pass filtered to remove high-frequency information which gives rise

to spikes in a computed salinity time series. Energy aliased prior to

filtering may still remain in the filtered data and will bias the estimate

of variance within the passband. If a perfect low-pass filter transmits

all information at frequencies below f and blocks all information above

fc the variance of the filtered time series is

c = a(kAf) (70)
call kc

where

f

k c
c Af
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If aliased information has contaminated the filtered data, the biased

computed variance will be

c2 = Af S(RAf) . (71)

C k<k I
The relative error in variance will then be 3

a '2_0 2
E C C (72)

a a

As before, we may quantify the relative error in variance by assuming I
a form for the input spectrum, a(f). Then Eq. (72) becomes

E 2 k kc Es(kAf) a(kAf) I
2 k<k c a(kff)

-C

U

I
U
I
I
I
I

~I

I • l l I l l l l l I I l l l I l l1 III



2.6 EXTENSION TO SALINITY

Absolute salinity is defined as the ratio of the mass of dissolved

material in seawater to the mass of seawater, expressed in parts per

thousand by weight.19 In practice, field salinity is determiend from

conductivity measurements. In 1978, a Practical Salinity Scale was

established by the Joint Panel of Oceanographic Tables and Standards

(JPOTS). Gieskes 11 presents the algorithm for implementing the Practical

Salinity Scale to compute salinity from measurements of conductivity,

temperature, and pressure. The relationship of salinity to the measured

parameters is non-linear. Therefore, it is not possible to predict ex-

plicitly the relationship between the power spectra of temperature and

conductivity at constant pressure and the power spectra of salinity, a

relationship which would permit extending the results of the preceeding

discussion on aliasing to predict errors in the salinity spectrum. An

alternative approach is available, which allows approximation of the

frequency domain relationship.

Since salinity, S, is a function of pressure, P, temperature, T, and

conductivity, C; an infinitesimal change in salinity, dS, is linearly

related to similar changes dP, dT, dC in any of the three parameters:

as aS aS
dS = - dP + - dT + -LdC (74)

The relationship is approximately true for finite but small changes, AC

and AT, and, for constant pressure, may be written

AS a AC (75)

aT ac

Expressions for-L and are derived from the JPOTS algorithm in AppendixaT ac
B. An algorithm for computing these quantities will be presented.
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Consider a time series of N samples of conductivity and temperature 3
sampled simultaneously at constant pressure from which a time series of

salinity may be constructed. Each of the sequences of samples may be 3
expressed in the form

x =  x + j, (76) I

where i is the mean of the time series. If the two sampled time series I
are composed of values which are close to the mean value, then the Axj

will be small for all j and Eq. (75) will be approximately correct. m

The variance of each of these time series is 3

2 1 N 2CF -R I (i - x

(77)

N 2, I
1~ 1A 2

which we see from Eq. (69), may also be determined by summing the spectral

estimate over all frequencies. It is shown in Appendix C that

os 2 T2(Cf,T)OT 2 + 0c2 CT)oc 2  (78)

where

0T(ET) = aS (79)
T-T C=C, T=T I

and as

eC(C,T) = T= (80)

I
U
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Spectral Density

Substituting from Eq. (69) into Eq. (78), we have

S s(kAf) 2 OT2(C) ST(kAf) + (C,T) S Sc(kAf) (81)
all k T all k alk

By extending the linear relationship between AS, AT and AC expressed in

Eq. (75), we may remove the summation from each of the terms in Eq. (81),

to yield an order of magnitude estimate for the salinity spectrum.

(s(kAf) Z oT2(C,T)ST(kAf) + 0 (C,T)Sc(kAf) (82)

Equation (82) is developed in Appendix D. Now, by the same derivation

which produced Eq. (68), we may compute the relative spectral error in the

salinity function

2- 2"E ST(kAf) - OT (CT) + ESc (kAf) " c(CT)
(ksf)T2( ,C))k2-- (83)

s T T + E)C(C,T)

with the spectral error in temperature and conductivity, EST and ESC,

respectively, given by Eq. (68).

Variance Error

Again, after the manner of Section 2.5, we may express the variance error

in a passband due to low-pass filtering with a cutoff frequency fc. The

relative variance error in salinity will be

2 2 2 2c E a T (CT) + 2Eo c2(CT)
E T C CC (84)

s " oT 2(Cf) + 2
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with E and E the relative variance error in conductivity and 3
temperature, respectively calculated from Eq. (73), and Cc and CT

the true variance, in the passband, of conductivity and temperature,

respectively, given by 3
2

C  Af a (kAf) . (85)

x kkc 

I
In summary, by making the assumption that a quasi-linear relationship I
exists between changes in conductivity, temperature, and salinity and by

assuming an analytical form for the spectra of the measured processes, 3
conductivity and temperature, it is possible to develop expressions for

the error due to aliasing in the salinity spectrum and in the variance 5
within a frequency passband.

These expressions, while approximations, at least provide a means of U
estimating the errors due to aliasing. It should be noted that the cor-

responding expressions, developed in Section 2.5 for temperature and

conductivity, are exact and are as accurate as the assumed input spectral

form, while the validity of the expressions for salinity is dependent 3
upon the assumption of quasi-linearity.

4
I
I
I
I
B
I
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3.0 RESULTS

High-speed temperature-and conductivity-time series were acquired and

analyzed to produce an estimate of spectral error for both measured

parameters and salinity. A total of five temperature and seventeen con-

ductivity-response-test time series were made for analysis.

For each parameter, the individual time series was first normalized to a

unit step, fit to an exponential decay, and this fit was then used to

estimate the variance of the timing errors, as described in Section 2.3.

A mean variance of timing errors was taken over all response tests for a

parameter. A periodogram of the unit step was computed for each time

series using Eq. (40) and the periodograms of all response tests for a

parameter were averaged to obtain the ensemble spectral estimate, S(kAf).

An upper bound for the transfer-function estimate was obtained from the

ensemble spectral estimate using Eq. (55) and the mean timing-error

variance was used to estimate a lower bound for the sensor transfer func-

tion (Eq. (56)).

Use of the transfer upper bound, ITh(kAf)I 2, for estimation of spectral

error due to aliasing gives a worst case (upper limit) estimate.

Therefore, this approach was followed throughout. The spectral error,

Es(kAf) was then estimated for several input spectral forms; an estimate

of time series variance error, E 2, was also obtained.
a

Results of these computations for both temperature and conductivity are

presented in sections 3.1 and 3.2. Section 3.3 extends the results to

estimate error for computed salinity.

3.1 TEMPERATURE

Five respunse tests of temperature were evaluated. Figure 10 is a

logarithmic plot of the normalized time series with data plotted as though

they were sampled at regular time intervals. In each case, plotting of
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the curve began with the first point after an identifiable break in the curve.

The repeatability of the sensor temperature response and its close approxima-

tion to an exponential decay are evident in fig. 10.

Figure 11 is a logarithmic plot of data from response test number four. Data

are plotted as though acquired at equal intervals, At = 0.01067 sec. The

best fit curve is also shown for comparison.

Table 1 presents results of the timing-error analysis for all five response

tests. The identifier for each data run in this and all following tables uses

the labeling scheme described in Appendix A. The second column lists the number

of data points used in the curve fitting process and in the calculation of the

timing-error variance. The error-analysis software which performed these

calculations was set up to allow the operator to select a subset of the response-

test time series for analysis by selecting the beginning and ending points of

the subset. The subset of data that most closely fit the exponential curve

was chosen for evaluation in each case. The constants a and to from Eq. (18)

were calculated for each best-fit curve as was the time constant for the decay,

given by the reciprocal of a. The timing-error variance is presented fn

column six of the table. Mean values for the time constant, for alpha, and

for the timing-error variance, a2, are also tabulated.

A periodogram of each normalized step-response time series was computed in

the manner described in Section 2.4. The software routine performing these

calculations simply selected the first 32 data points for the spectral cal-

culations. The time series was corrected for trend and offset using Eq. (46),

transformed via a fast Fourier transform, and the periodogram was calculated

via Eq. (49). Figure 12 shows the original time series, while fig. (13) shows

the normalized, trend and offset corrected data prior to processing via FFT.

The individual step-response periodograms for temperature are presented in

Table 2, as is the ensemble average spectrum. A comparison of PSDs between

response tests emphasizes the consistency of results obtainable by this

testing procedure.
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Power transfer functions were computed from each of the temperature-

response periodograms using Eq. (50). These appear in Table 3 as does the

ensemble estimate, ITh(kAf)1 2, computed via Eq. (53). These data are

plotted in fig. (14), the numbers corresponding to the run number shown in

Table 3. The solid curve represents the estimated power transfer

function.

Shaw's method was used to place bounds on the transfer function estimate,

as described in Section 2.4. Upper and lower limits for the power and

amplitude transfer functions are given in Table 4. The power transfer-

function limits are plotted in fig. (15).

As described in Section 2.5, in order to quantify the extent to which

aliasing will affect temperature (or other CTD) data acquired at the

standard data rate, it is necessary to specify the spectral form of the

input to the sensor. The particular shape of the spectrum, a(f), and the

shape of the sensor transfer function completely determine the extent of

aliasing; therefore the choice of a(f) has a strong effect as will be

demonstrated below.

Physical considerations must play a role in the selection of a spectral

form. Bracewell 14 has shown that if a function and its first n-1 deriva-

tives are continuous, then the transform of the function dies away at

least as rapidly as f-(n+l) for large f. Similarly, its power spectrum

dies away at least as rapidly as f-2(n+l).

Real-world physical processes usually are assumed to be continuous. A

less restrictive model for the input functions would be a signal which

possesses, at most, a finite number of finite discontinuities, so that its

first derivative is impulsive. Such a signal would possess a transform

which behaves as f-1 for large f, and a power spectrum which decays as

f-2.

A worst-case model for the input functions which results in a poor signal-

to-noise ratio is one whose spectrum is white noise for virtually all

frequencies. Another class of signals would be those whose spectra decay

as f-n down to some constant noise level.
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I

The input spectral form for all these cases may be represented by i

a(f) = 1/fn + 1/fon (86) 3
with the second term being the constant-noise spectral density. Thus, fo

represents the frequency at which the signal-to-noise power ratio is

unity, the signal being given by 1/fn . The relative spectral error, given

by Eq. (68), and relative variance error, given by Eq. (73), were calcu-

lated for three specific cases corresponding to those described above.

Table 5 describes these three test cases. The relative spectral error in

temperature for each of the test cases is shown in Table 6. The same data

are plotted in fig. (16). i

Recall that this parameter is the band-by-band ratio of aliased to

unaliased spectral density, allowing for transfer function effects of the

sensor prior to digitization and correction for transfer effects after

aliasing occurs. The power-transfer-function upper limit from Table 4 was e
utilized for these calculations. The wavelength entry in the table is

based upon the laboratory-response-test drop rate of 0.75 m/s and repre-

sents the spatial resolution corresponding to the particular frequency.

Test Case 1, white noise, is a pessimistic "worst case" which one might I
not expect to encounter in the real world. As shown in Table 6, spectral

error is significant in all parts of the computed spectrum due to the fact I
that the sensor transfer function is non-zero beyond the Nyquist fre-

quency, 15.63 Hz, for 32 ms sampling. Test Case 2, on the other hand, i

represents an optimistic case in which the spectral decay is not affected

by instrumentation noise at any frequency. Clearly, aliasing does not 3
present a problem except in that portion of the spectrum near the Nyquist

frequency. Finally, Test Case 3 is an intermediate case more likely to be

encountered than either of the other two cases in the course of real-world

measurements. In examining the results of Test Case 3, it is seen that

spectral error remains less than 10% until spatial resolution becomes less i
than 0.10 m. The qualifying assumption is that the S/N ratio equals 1 at

the Nyquist frequency. Experience with this instrument has shown this to

be a reasonable assumption.

I
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I
I

Table 6. Relative Spectral Error in Temperature For Three Spectral Input

Forms. Table entries are percentages.

I
I

Relative Soectral Error (Per Cent)

Center 2 2
Frequencies Wavelength White 1/f 1/f + White Noise *

(Hz) (m) Noise

0.00 - 7.4 0.0 0.0

2.93 0.256 19.5 0.1 0.4

5.86 0.127 28.1 0.9 3.7

8.79 0.085 40.9 3.8 11.9 I
11.72 0.064 61.3 13.1 29.5

14.65 0.051 103.4 58.7 78.5

I
I
I

I
I
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I

Cumulative error in variance also was computed. Recall that this repre- I
sents the error which would be introduced by aliasing in a calculation of

the time-series variance if the time series were numerically low-pass

filtered after sampling, as is done with temperature and conductivity data

to eliminate spikes in computed salinity. The cumulative error data are

presented in Table 7 as a function of the low-pass-filter cutoff frequency

for several different frequencies. These frequencies correspond to upper

limits of the discrete frequency bands produced by the response-test

spectral processing. Figure 17 is a graphical presentation of the same

data for each of the three test cases.

In comparing the data of test cases 2 and 3 with corresponding results for

relative spectral error, it is interesting to note that even though

aliasing results in significant error in the spectrum at higher frequen-

cies, the effect on computed variance is considerably less. Since the

assumed temperature spectrum decays as 1/f2, the major contribution to the

variance is at lower frequencies where aliasing error is relatively unim- I
portant. Thus, even though the sensor responds to energy at frequencies

above the Nyquist, the fraction of total signal energy available at those

frequencies is small. Therefore, when this energy is aliased into the low

frequency, high-energy region of the spectrum, its effect is relatively 3
unimportant.

The white-noise case emphasizes the effect of the input spectrum. Since I
there is no decay in the spectrum at high frequencies, considerable energy

is available to be aliased, the extent being determined by the transfer 3
function. Therefore, the effect of aliasing on computed variance due to

white noise is noticeably greater at all frequencies. 3

I
I
U
I
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Table 7. Cumulative Aliasing-Induced Error in Temperature Variance after

Low-Pass Filtering. Data presented are percentage error for various

filter cutoff frequencies, calculated for three different input

spectral forms.

Variance Error (Per Cent)

Frequency
Limit White 1/f2  1/f2 + White Noise
(Hz) Noise

1.46 7.4 0.0 0.0

4.39 15.4 0.0 0.1

7.32 20.5 0.0 0.2

10.25 26.3 0.1 0.4

13.18 34.1 0.2 0.7

15.63 44.9 0.4 1.1
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3.2 CONDUCTIVITY

Evaluation of CTD conductivity response tests was conducted in the same

manner as the temperature evaluations described in Section 3.1.

Initially, five conductivity tests were performed. A preliminary evalua-

tion of these data revealed substantially greater variation from one test

to the next. Therefore, additional test data were acquired for the pur-

pose of obtaining a more reliable estimate of the sensor's response. The

five initial response tests are referred to as data set A, while the

twelve additional response tests are referred to as set B. The same CTD

unit and conductivity sensor were used in both tests. However, several

weeks elapsed between performance of the two tests. Evaluations of the

two sets were handled separately so that any variation in the data due to

sensor changes or changes in test conditions could be identified. None

were seen.

Figure 18 is a logarithmic plot of the five normalized time series of con-

ductivity obtained during test A. Data are plotted as though acquired at

equal intervals. Again, plotting of points begins with the first point

after an identifiable break in the curve. Two features are obvious in

this figure. First, as indicated above, the conductivity data are less

consistent from test to test than were the temperature data. Secondly,

instead of a simple logarithmic response, as in the case of the tempera-

ture sensor, the response of the conductivity sensor is clearly more

complex. Although not plotted, data from Test B show the same features.

The conductivity response curve may be broken into two regions. Initial

sensor response to the step change is sharp. On a logarithmic plot, such

as figure 18, this portion of the curve is approximately linear; its dura-

tion is on the order of 40 - 50 ms. The slope of the logarithmic curve is

steep, indicating a relatively short time constant, and is fairly consis-

tent from test to test.
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The second region of the curve is even more linear than the first, sug-

gestive of a more truly exponential response to the step change. The

duration of this portion of the curve is greater, on the order of 80 - 120

ms. The time constant is substantially longer, but variation between

tests is greater, as may be seen in figure 18. Figure 19 is a logarithmic

plot of an individual response test, number three from set A. The deline-

ation into two distinct regions is evident.

Previous researchers have noted this feature of the Neil Brown conduc-

tivity sensor. Gregg, et al., 13 have developed a computerized model of

the physical behavior of the cell which accurately predicts the sensor

response to a step input. The initial sharp response is associated with

the initial encounter between the sensor and the conductivity interface,

as the water of "new" conductivity first enters the cell. The slower

response is attributed to a flushing action which takes place as "old"

water is gradually washed from the region of the sensor walls, both

interior and exterior. Since the flow of water through and around the

sensor is essentially laminar, flushing of residual water is described

approximately by an exponential decay.

The observed variability in the flushing region of the curve is probably

due to variation in the drop rate of the CTD unit through the conductivity

interface. A higher drop rate would result in more rapid flusing and a

steeper logarithmic response curve, while the opposite is true for a slow

drop rate. From figure 18, we see that test COlA has a steeper slope,

while the other four have slopes which are approximately the same and are

shallower than the first. Since no means was available for controlling

the drop rate of each individual test, some variation is expected.

Timing-error analysis of conductivity data was conducted, as described

previously, by fitting an exponential decay to any desired region of the

time series. Table 8 presents results of the analysis for data set A,

with the curve fit performed only over the initial, steep region of each

69



inif

ELL1K J

I U

z O
0 0

0

-4-

a. '4-)

I- M

0 0

70e



4S. r_ - LO %D LA 4 ON C'J

CL

o S
LiJ

4.)

4.)

C)- E 14.4 C-1;

a >

4.)0

a).)

0£
0.

a) 4i

40
OOt

c) l LA LA
4 w £l -W C. %4 4 .

4-))

om I-

00)

£ 0

4-C

mp 4..)

~-0. (.7 LA -4 - W(J

%A 0.u~L 4 L .
Cf. a 0'

1.71



I

curve. A much greater variation in curve parameters from test-to-test I
is evident, relative to the equivalent data for temperature. A similar

curve fit was conducted for the slow response portions of these same 3
curves and results are presented in Table 9. a
Again, the time constant for the first test is significantly less than the

other four. Note that the mean timing-error variance, ae2 is considerably

greater than for the temperature tests. This increase in variance of con-

ductivity is thought to be a measure of the poorness of fit of either region

of the response curve to an exponential decay. Table 10 presents results m
of the timing analysis for data set B. The steep region of the curve was

fit in all twelve of these tests. Variability of all parameters is again 5
evident. I
Since the sample timing error is determined solely by the data sampling

circuitry and not by any characteristic of the sensor or the sensed parameter,

the true timing error should be the same for both temperature and conductivity.

Since the greater variance for conductivity is attributed to the larger

residuals of the exponential fit as well as to the timing error, ae2 for

temperature, the smaller of the computed timing-error variances, was used

in all subsequent calculations of spectral error for conductivity. 3

A periodogram of each normalized conductivity step-response-time series was 3
computed in the manner described for temperature response. The periodograms

for data set A are presented in Table 11, while Table 12 contains periodogram

PSDs for conductivity data set B.

Power transfer functions for conductivity were computed using Eq. (50). For I
data set A these are presented in Table 13, and for data set B in Table 14.

Ensemble average transfer functions are presented for each data set. Plots 5
of these data appear in figs. 20 and 21. The ensemble average for each set

is plotted as the solid curve in each case. These data also display con-

siderable variation from one run to the next.

I
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The ensemble average transfer functions are presented in Table 15 together

with an average for all conductivity response tests. Upper and lower

limits for both power and amplitude transfer functions obtained by using

Shaw's method, as before, appear in Table 16. Transfer function limits

are plotted in figure 22. As in the case of the temperature calculations,

the upper-limit transfer function was used for computation of aliasing in.

order to obtain a "worst case" estimate.

Estimates of relative spectral error for conductivity were made employing

the same three spectral forms and technique as was used for temperature.

The results are tabulated in Table 17 and plotted in figure 23. Although

the high-frequency response of the conductivity sensor is greater than far

the CTD temperature sensor and the relative spectral error is somewhat

greater in all frequency bands for conductivity, the results are not

significantly different.

Cumulative, aliasing-induced error in the variance of conductivity was

also computed and the results are presented in Table 18. As shown, the

conductivity variance error differs only slightly from the temperature

variance error. Results are plotted for each of the three cases in figure

24.
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Table 15. Ensemble Average Power Transfer Functions for Conductivity Data
Sets A and B and Weighted Average for All Conductivity Data.

Transfer Function i
Frequency Set A Set B Average

(Hz) (5 Runs) (12 Runs) (17 Runs)

2.93 0.756 0.765 0.762

5.86 0.657 0.632 0.639

8.79 0.525 0.536 0.533

11.72 0.418 0.408 0.411

14.65 0.283 0.245 0.256

17.58 0.188 0.165 0.172

20.51 0.140 0.130 0.133 3
23.44 0.114 0.089 0.096

26.37 0.082 0.055 0.063

29.30 0.089 0.094 0.093

32.23 0.085 0.123 0.112

35.16 0.076 0.096 0.090

38.09 0.090 0.122 0.113

41.02 0.137 0.158 0.152 3
43.95 0.122 0.146 0.139

I
l
I
I
1
i
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Table 16. Transfer Function Limits for CTD Conductivity Response.
Wavelengths correspond to drop rate of 0.75 m/s.

Power Transfer Function Amplitude Transfer Function

Frequency Wavelength Upper Lower Upper Lower
(Hz) (m) Limit Limit Limit Limit

0.00 - 1.000 1.000 1.000 1.000

2.93 0.256 0.762 0.759 0.873 0.871

5.86 0.127 0.639 0.609 0.799 0.781

8.79 0.085 0.533 0.487 0.730 0.698

11.72 0.064 0.411 0.352 0.641 0.594

14.65 0.051 0.256 0.189 0.506 0.435

17.58 0.043 0.173 0.105 0.416 0.325

20.51 0.037 0.133 0.067 0.365 0.260

23.44 0.032 0.096 0.031 0.310 0.175

26.37 0.028 0.061 0.000 0.247 0.000

29.30 0.026 0.093 0.016 0.304 0.125

32.23 0.023 0.112 0.024 0.335 0.154

35.16 0.021 0.092 0.000 0.303 0.000

38.09 0.020 0.117 0.000 0.342 0.000

41.02 0.018 0.147 0.009 0.384 0.095

43.95 0.017 0.143 0.035 0.378 0.187
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Table 17. Relative Spectral Error in Conductivity for Three Spectral Forms.
Table entries are percentages.

Relative Spectral Error (Per Cent)

Center
Frequency Wavelength White 1/f2 +

(Hz) (M) Noise W/f2  ghite Noise

0.00 - 8.2 0.0 0.0

2.93 0.256 21.5 0.1 0.4

5.86 0.127 26.7 1.0 3.5

8.79 0.085 46.2 4.6 13.8

11.72 0.064 67.2 15.9 33.4

14.65 0.051 115.0 61.0 85.0
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Table 18. Cumulative, Aliasing-Induced Error in Conductivity Variance After
Low-Pass Filtering. Data presented are percentage error for
various filter cutoff frequencies, calculated for three different
spectral forms.

Frequency Variance Error (Per Cent)
Limit White 1/f2 +
(Hz) Noise 1/f2  White Noise

1.46 8.2 0.0 0.0

4.39 17.1 0.0 0.1

7.32 20.9 0.1 0.2

10.25 28.1 0.1 0.4

13.18 36.8 0.2 0.7

15.63 49.1 0.4 1.2

87



ri! i' .. ... -. .. c *..,*... .,vl.:,

.1

SI

I
I

o u "
L4-

>
'- ) 4-

I- 0. 4--

H 3.-,- "0

0 g OS-.

H >

u 4 .o
o SO- -M

0 '. 0 u I
.5.- .5-a=Z• . $- L =J riO

H -,

a: >" I

X 4JJ G,- (n

o u

11-U 0 =)

w) a) a,

r_ u (1 -)
EE .. I 4rq-

0 4- -

0 TI = 0U
L04 .L-0 4-

H U L. I-.

0 0- O 4-."

<.- u in-

x 0: 0
Id- Ii 0e 0

z 0 N t 0) _

inH \ * F-.to
zi H c 4- )

HJ I I I
W I I I

in * o x
LL.

. ....................

0 0 0 0 0 0

(%) tI3 3DN NTI:A I

883



0

0

0

(T)

E

000000000000 0

w *MMOM))M 0 04

M >

LL > -

0 0

0.- 0 40

:3 .9>

H to

Una I10 a)
<4

m 4-
N., 0

0 4-

0 0~

- 0
0 If) 0 In 0 1)
0 1 cu (U u

(0. /4;dd) .jLp/SP

89



0I

0

1-400

H I o Euu

z-f 000000034

04Z1 oinouom - L

Z1 I E
0H U)U

D o'

4LL <) M .

0 --

z Lj

4 LL L

0 U0
4J
S..

0 0 I

(wo/Sw/'dd) C2P/Sp

901



3.3 SALINITY

An approach for extending estimates of spectral error and variance error to

error in salinity due to aliasing was developed in Section 2.6. As stressed

previously, the expressions derived in that section and in Appendix C are

approximate. However, the relationship between salinity, conductivity and

temperature at constant pressure is nearly linear and, therefore, the accuracy

of the approximate expressions is expected to be high.

The linearity question may be more definitively considered in the following

way. If salinity were a linear function of temperature and conductivity,

one could write

S(T,C) = c1T + c2C + c3, (87)

where c1, c2, and c3 are constants. Then the total derivative of salinity

would 
be
dS(T,C) = cldT + c2dC. (88)

But from Eq. (74), the exact expression for the total derivative of salinity

is

dS(T,C) = eT(T,C)dT + ec(T,C)dC, (89)

where oT(T,C) and oc(T,C) are the first partial derivatives of salinity
with respect to temperature and conductivity, respectively.

An algorithm for computation of eT and oc is developed in Appendix B.

This algorithm was implemented and used to compute OT and 0 at zero pressure

for a range of combinations of T and C. The results for OT are plotted in

fig. 25 as a family of curves which present eT as a function of conductivity.

Each curve corresponds to a single temperature. Figure 26 is an equivalent

plot of 0c. Clearly, oT and oc are not constant.

I
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However, review of these two plots shows that both OT and ec change relatively U
slowly with temperature and conductivity. Therefore, for small changes in T

and C, salinity may be treated as linear and the correctness of previous

assumptions to this effect is confirmed.

Equation (83) was used to compute the relative spectral error in salinity

due to aliasing. As in the case of both conductivity and temperature, three 5
different spectral cases were considered for purposes of the calculation.

In each case the same spectral input was assumed for both temperature and

conductivity. Table 19 is a tabulation of the results for the specific case

of zero pressure, a temperature of 5.000C, conductivity at 33.45 mS/cm, and

salinity of 35.00 ppt. The data are presented graphically in fig. 27. As in

the case of both temperature and conductivity, the extreme case of white

noise shows significant error in all frequency bands, while the more realistic 3
case of 1/f2 decay plus white noise shows error less than 10% while the wave-

length (spatial resolution) is greater than 0.10 m. 3
The effect of different temperature and conductivity combinations at a con-

stant salinity of 35.00 ppt was also considered. Results for an assumed

input spectrum decaying as 1/f2 + white noise are tabulated in Table 20. The

effect of changing temperature and conductivity conditions is almost undetectable. I
Comparing these results to those presented in Table 19 serves to emphasize the

importance which is played by the input spectral form in determining the 3
extent of aliasing in any parameter, including salinity. I
The effect of aliasing on computed salinity variance was also evaluated

using Eq. (84). The results were obtained for several cutoff frequencies,

assuming that the digitized time series was idealy low-pass filtered prior

to calculation of the variance. These are presented in tabular form in Table

21 and in graphical form in fig. 28. Three input spectral forms were con- m

sidered and results were obtained for zero pressure, temperature of 5.000 C,

I
m
I
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Table 19. Relative Spectral Error in Salinity for Three Input Spectral Forms.
Salinity is computed for pressure = 0.00 dbars, temperature
5.00 *C, conductivity 33.45 mS/cm, salinity = 35.00 ppt.

IRelative Error (per cent)

Frequency Wavelength White 1/f2  1/f2 +
(Hz) m Noise White Noise

0.00 - 7.8 0.0 0.0

2.93 0.256 20.6 0.1 0.4

5.86 0.127 27.3 0.9 3.6

8.79 0.085 43.8 4.2 12.9

11.72 0.064 64.6 14.6 31.6

14.65 0.051 109.9 60.0 82.1

II
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Table 21. Cumulative Aliasing-Induced Error in Salinity Variance After Low-Pass m
Filtering. Data presented are precentage errors for various filter
cutoff frequencies, calculated for three different input spectral
forms. Salinity is computed for pressure = 0.00 dbars, temperature =
5.00*C, conductivity = 33.45 mS/cm, and salinity = 35.00 ppt. I

Variance Error (Per Cent) I
Frequency

Limit White 1/f2  1/f2 + White Noise

(Hz) Noise

1.46 7.8 0.0 0.0 I
4.39 16.3 0.0 0.1

7.32 20.7 0.0 0.2 3
10.25 27.3 0.1 0.4

13.18 35.6 0.2 0.7

15.63 47.2 0.4 1.2

mm
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I

conductivity of 33.45 mS/cm, yielding a salinity of 35.00 ppt. The

results obtained differ hardly at all from those of conductivity and

temperature. Except for the white-noise case, variance error is very low

for low-pass filtering schemes which one might employ. I

I
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4.0 COMPARISON WITH OTHER WORK

Gregg, et al., (1982)13 describe an in-depth study of the transfer charac-

teristics of the NBIS 3 cm conductivity cell. This definitive work

discusses the physical basis for the observed effects and describes a

physical model which incorporates these salient characteristics of the

sensor and accurately predicts the measured transfer function.

The technique used by Gregg 20 for determining the conductivity-sensor

transfer function utilizes a salt-stratified tank in which a stable,

two-layer interface is maintained with the aid of stirring grids. Measure-

ments of the interface show the transition region to be %2 cm thick. A

small, two-electrode conductivity probe consisting of two 0.1 mm-diameter

wires mounted 2 mm apart was used as a conductivity reference to which the

test conductivity sensor was compared. Thus, assumptions regarding the

thickness or other characteristics of the interface region were unneces-

sary. The test and reference sensors were mounted on a ram, the speed of

which was controlled and measured as a digitally sampled parameter. The

availability of simultaneously sampled time series of reference and test

sensor data made possible the calculation of cross spectra from which the

amplitude-squared and phase portions of the transfer fuiction were com-

puted. Time series data were acquired at a regular rate of 10,000

samples/s. Thus, the Nyquist frequency associated with the discrete

spectra obtained in this fashion is well above any frequency to which the

NBIS conductivity cell might be expected to respond.

From these experiments, power transfer functions were obtained for conduc-

tivity with much higher frequency resolution than reported herein for the

NAVOCEANO CTD data aliasing study. The absence of jitter in the sampled

data also contributed to a high level of confidence in the reported data.
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The Gregg test data were acquired at various drop rates ranging from 0.05 m
m/s to over 3.1 m/s and the transfer function was shown to depend signifi-

cantly upon the drop rate. One particular test conducted at a rate of

0.884 m/s was near the rate of 0.75 m/s used for the tests described in

the NAVOCEANO study. The transfer function for this test is -plotted in 3
figure 29 together with the upper and lower limits of the conductivity

power transfer function for purposes of comparison.

A comparison of Gregg's results with the NAVOCEANO study data shows: Good

agreement at all frequencies; and that the transfer function estimate pro- m

duced by this investigation tends to be slightly high relative to Gregg's

results. m

An explanation for the difference between the NAVOCEANO data and Gregg's

results may be found in examining the power transfer function (PTF) for

frequencies beyond the Nyquist frequency for high data rate sampling

(fN = 46.88 Hz). Plots of the PTF measured by Gregg's technique show 3
significant, secondary side lobes centered at frequencies on the order of

40-60 Hz, depending upon sensor drop rate, and again at approximately 100 m

Hz. These peaks in the power transfer function, well above the high data

rate Nyquist frequency, offer the opportunity for aliasing in the conduc-

tivity step response test data. Aliasing in the step response spectrum

would then result in a bias of the estimated conductivity power transfer

function. Use of this calculated biased transfer function for determina- 3
tiok of error in conductivity due to aliasing will yield a biased high

result. This biased result will be conservative in that the estimate of m

error due to aliasing will represent a worst case.

m
m
m
I
I
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5.0 CONCLUSIONS I
The products of this investigation, described in Section 3.0, include I
estimates of the amplitude portion of the power transfer function for both

the temperature and conductivity sensors of the NBIS Mark IIIb CTD. By 3
assuming specific forms for the power spectrum of the input parameters,

estimates for spectral error and variance error due to aliasing were 3
derived for both conductivity and temperature and were extended, as ap-

proximations, to include the corresponding effects on calculated salinity.

The conclusions which may be drawn from these results can be divided into

two areas: Those relating to the methodology employed to obtain the results,

and those relating to the results themselves. These two areas are discussed m

further in the following sections. I
5.1 METHODOLOGY

The methods employed to obtain the results described in Section 3.0 include

certain new techniques as well as adaptations of existing techniques for

data analysis. For the purposes of this investigation, these techniques

represent a product as well, since they are now made readily available to

NAVOCEANO for further investigations of a similar nature and, with certain m

modifications as described in Section 6.0, for use in routine determination

of CTD sensor transfer functions. A brief, summary description of each of 3
the techniques used is provided below.

Transfer Function Estimation

A method of estimating the transfer functions of the NBIS CTD sensors has I
been developed which processes data obtained using existing NAVOCEANO

laboratory and data acquisition equipment. The method does not produce m

the transfer function per se, but provides upper and lower bounds to the

transfer function by using Shaw's method to estimate limits for the power

spectrum of an unequally spaced sequence. The upper limit is adequate for

I
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Ibounding the spectral effect of aliasing but a bounding approach does not
produce a sufficiently accurate transfer function for use in deconvolution

corrections to measured time series, such as operational CTD data. Recom-

mendations regarding this problem are provided in Section 6.

Spectral Error Estimation

A procedure was also developed for estimating the error produced by aliasing

in a spectrum of temperature or conductivity data sampled at the standard

rate. The extent of aliasing in such sampled data is a direct function of

the sensor transfer function and the true spectrum of the sampled process.

The results presented in Section 3.0 are based on assumed input spectra,

the shapes of which are derived from assumptions regarding basic physical

characteristics of the data. Refined estimates could be obtained by using

a more accurate representation for the spectral form, for example, actual

measured data.

Variance Error Estimation

The approach used to estimate spectral error was extended to allow an estimate

of aliasing-induced error in the calculated variance of a conductivity or

temperature time series. Since these time series are presently low-pass

filtered prior to calculation of salinity to reduce "spiking", the variance

error was computed for various filter cutoff frequencies corresponding to

upper limits of each of the frequency bands obtained in a spectrum of standard

rate data. Parseval's relation was used to compute the variance and the

variance error, so that the results are applicable to the case in which an

ideal filter is used to low-pass the data.

Extensions to Salinity

On the assumption that changes in conductivity and temperature may be

treated as perturbations from some mean value and are small (less than a

few °C or mS/cm), a linearizing approximation was developed to extend the
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spectral and variance error results to salinity. The results obtained 5
are only approximations but are adequate to provide an estimate of the

order of magnitude of the aliasing problem as it applies to salinity. 3
Validity of Results 1

The independent work of Gregg et al., 13 described in Section 4.0, has

provided a means of assessing the validity of the results of this study, at m
least insofar as the conductivity sensor power transfer function estimate

is concerned. As indicated previously, the results of Gregg fell outside

the upper and lower bounds obtained in this investigation for some

frequencies. A possible explanation for this discrepancy, as discussed

previously, is the presence in the step response spectrum of energy which

has been aliased from frequencies higher than the high data rate Nyquist

frequency. This aliased energy biases the spectral estimate and the transfer

function, causing both to be higher than the correct value. The magnitude

of the differences between the results of this investigation and those of m

Gregg is relatively small. Overall, the agreement is good, and serves to

confirm the validity of the results obtained for the conductivity sensor 3
power transfer function. Indirectly, this agreement confirms the correctness

of the methodology used to obtain the transfer function. 3
5.2 DATA AND DATA PRODUCTS

Results beyond the conductivity transfer function have not been independently

confirmed for this investigation. As pointed out previously, the validity of

the specific results obtained for spectral error and variance error are

dependent upon the correctness of the assumed input spectral forms. A 5
discussion of the choice of those forms was presented in Section 3.1 and

need not be repeated here. However, a discussion of the results of those m

calculations must be prefaced by a reminder that the choice of the spectral

I
1
I
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forms used in this investigation was, in fact, an assumption made by the

investigator. Assuming that the 1/f2 + white-noise model is a valid choice

for the measured spectrum, the following specific conclusions may be drawn

regarding the effect of aliasing upon data measured by the NBIS Mark IIIb

CTD instrument.

Temperature

An extension of the temperature data product to a spatial resolution on

the order of 0.10 m would not be limited by aliasing, assuming that spectral

error less than or equal to 10% is acceptable. This may be seen by inter-

polating linearly in Table 17 to obtain an estimate of spectral error. At

the laboratory drop rate of 0.75 m/sec, resolution of 0.1 m corresponds to

a frequency of 7.5 Hz, for which the relative spectral error is approximately

9%. This frequency is also less than one-half the Nyquist frequency for

standard data rate sampling. Lower spectral error results at lower frequencies.

An issue separate from that of aliasing is the signal-to-noise ratio in the

data product itself. When a physical parameter is sensed by a transducer,

an analog signal is typically produced, the level of which is proportional

to the value of the sensed parameter. After sensing, the analog signal is

contaminated by noise in the transducer itself and in the analog section of

the data acquisition equipment. The process of conversion from an analog

signal to a corresponding digital value introduces digitization noise. The

spectral form of digitization noise is "white", meaning that it is evenly

distributed over all portions of the frequency spectrum. Sensor and other

analog noise have spectral forms which depend upon the specific sensor and

circuitry involved. However, to a good approximation these may also be

treated as white. It should be pointed out that the noise sources described

here are internal to the system. External, or ambient, noise is not

considered.

If an ideal sensor did not exhibit a frequency-dependent attenuation, then

the signal-to-noise ratio (SNR) obtained would be

SNR(f) = S2(f)/n
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where S1(f) is the spectral density of the input process and n is the

internal noise spectral density. Recall, however, that a real sensor

possesses a power transfer function, IT(f)l 2 , so that the measured spectral

density is S2(f) given by Eq. (58). As described in Section 2.5, the

measured spectrum may be corrected for transfer function effects. However,

in so doing the signal-to-noise ratio is altered to

SNR'(f) = S•(f) IT(f)1 2

Thus, in those portions of the spectrum for which the power transfer

function is less than unity, the signal-to-noise ratio is reduced cor-

respondingly. The SNR is poorest, i.e., has its lowest numerical value,

in those regions where the transfer function has "rolled off" at the

edge of the sensor passband. Extension of the resolution of any data

products into this rolloff region of the spectrum will result in exag-

geration of system noise in that frequency regime due to the transfer

function correction process described in Eq. (58). A hard and fast

rule cannot be established for determining the best cutoff frequency

for a data product. This is especially true since both the sensor transfer

function T(f) as well as the input signal level S1(f) vary during actual

deployments.

If a cutoff frequency corresponding to the sensor transfer function I
half-power frequency is used (arbitrarily) as a rule, then the signal-to-

noise power ratio will never be greater than twice the optimum value.

The CTD temperature sensor transfer function reaches a half-power level

at a frequency of approximately 2.8 Pz, corresponding to a spatial U
resolution of 0.26 m for the laboratory drop rate.

I
I
I
I
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Because the temperature sensor is, to good approximation, a point sensor,

its frequency response characteristics should be nearly independent of the

sensor drop rate. This hypothesis is supported by the temperature data of

fig. 10 which show virtually no variability from one response test to the

next. Thus, the spatial frequency response of the sensor may be obtained

by determining the spatial frequency k', corresponding to a particular

temporal frequency f, via

k' = f/v

where v is the drop rate. Spatial resolution, or wavelength, is given by

X= 1/k' = v/f

Hence, for an operational drop rate of 1.0 m/s, the sensor half-power

frequency is 0.36 m.

Thus, we conclude that the temperature data product could be extended to

approximately 0.10 m without significant error due to aliasing. However,

the signal-to-internal noise power ratio decreases below one-half the

optimal value as spatial resolution becomes finer than 0.36 m and below

one-fourth as resolution exceeds 0.18 m.

Conductivity

An extension of the conductivity data product to a spatial resolution on

the Lrder of 0.10 m would not be so limited. This resolution, equivalent

to a frequency of 7.5 Hz at the laboratory drop rate, corresponds roughly

to the half-power point for the conductivity sensor transfer function.

This frequency is also less than half the Nyquist frequency for standard

data rate sampling. As shown in Table 17, spectral error at a frequency

of 7.5 Hz would be on the order of 10% and would be less for lower frequencies.
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For the operational CTD downcast drop rate of 1.0 m/s, a spatial resolution m
of 0.10 m corresponds to a 10 Hz frequency. This is still substantially

below the Nyquist frequency. Unlike the temperature sensor, the CTD con- m
ductivity sensor transfer function varies greatly with drop rate.

Therefore. it is not possible to infer results from one drop rate to

another. However, Gregg, et al., 13 report results for several drop rates

near 1.0 m/sec, showing that the power transfer function plotted in k'

space does not change dramatically with drop rate. We may conclude that

the value of the transfer function will be somewhat changed under opera-

tional conditions, but will still allow a good signal-to-noise ratio for

the sensed signal.

Salinity

A review of Table 19 reveals that salinity is not adversely affected by

aliasing for frequencies below 7.5 Hz and spatial resolutions coarser than

0.1 m. This is to be expected since a similar conclusion was reached for

the two primary factors, conductivity and temperature. However, due to

the restriction on extension of temperature beyond 2.8 Hz based on

deterioration in the signal-to-noise ratio, a similar restriction should

apply to salinity. In summary, we conclude that while aliasing does not

prevent extension of data products to a spatial resolution on the order of

0.10 m, the rapid rolloff of the temperature sensor beyond 0.36 m does.

Im
I
m
I
I
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6.0 RECOMMENDATIONS

Sensor Performance

This study has shown that data products obtained from NBIS Mark IIIb CTD

data are not significantly affected by aliasing at the present operational

drop rate of 1.0 m/sec, as long as the products have a spatial resolution

no finer than 1.0 m. In planning for extension of data products to finer

resolution, the first barrier to be surmounted is that of the limited

frequency response of the presently-used thermistor/platinum wire tempera-

ture sensor. It is recommended that an effort be undertaken to improve

the high-frequency performance of this sensor, making its response comparable

to that of the fast 3 cm conductivity cell.

If this improvement is realized, then an enhancement of data resolution to

something on the order of 0.1 - 0.2 m should be possible without serious dis-

tortion due to aliasing. Improvement in resolution beyond 0.1 - 0.2 m will

require an increase in the data sampling rete of the CTD so that the Nyquist

frequency will be substantially higher than the frequencies of interest.

Data Correction

As improved resolution forces an expansion of the data frequency band, low-

pass filtering of conductivity and temperature will no longer be a practicable

means of eliminating salinity spikes. The most accurate alternative will

be deconvolution correction of the individual sensor time series using the

respective transfer functio-s. This will raise several problem areas which

must be dealt with.

As indicated previously, deconvolution requires that both the amplitude and

phase portions of the sensor transfer function be known. In addition, Gregg

et al. 13 have pointed out that the relative phase of temperature and con-

ductivity must also be known in order to produce a correct salinity.
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Since the present drop rate procedure is not capable of directly I
determining the information, a significant modification of the testing

procedure will be necessary. The changes required are: I

1) Provide for variation, control, and measurement of the sensor drop

rate, I
2) Provide for data sampling at a fixed sampling frequency (without

jitter) and at a sampling rate much greater than 100 Hz, I
3) Provide for measurement of the salinity interface during the drop

test with a reference probe.

A second problem is that of contamination of the data by noise which is

amplified during the deconvolution process, as described in Section 5.2. m
Matsuyama 21 has discussed this problem in considrable depth. While

Matsuyama presents a variation in the conventional deconvolution procedure I
to reduce contamination, a complete solution is not obvious and further

investigation will be required.

A third problem which Gregg et al. 13 have also identified is that of

data correction due to variation in the sensor drop rate. The variation

in drop rate is primarily due to ship motion, particularly heave and roll.

As has been discussed previously, the conductivity sensor transfer

function changes with changes in the drop rate. This requires that con-

ductivity be corrected via some form of dynamic deconvolution procedure in 3
which both the data and the transfer function change with time. Such a

correction procedure may be possible, but the existence of one is not m

known to the investigator. An alternative proposed by Gregg et al.

would be mechanical compensation of the CTD drop rate via a controlled

winch or other means so that vertical motion is nearly constant.

II

I
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APPENDIX A

PLOTS OF HIGH-DATA-RATE TIME SERIES

Time series of each of the response test data sets are plotted in the

following figures. Two sets of such data were acquired for analysis in

this investigation. The initial set (data set A) consisted of five

temperature response tests, TOIA - TOSA, and five conductivity response

tests, COlA - C05A. A second set (data set B) consisted of twelve conduc-

tivity response tests, C01B - C12B. All data were acquired using the same

CTD and sensors.

Data were acquired at a nominal sampling rate of 93.75 Hz. Due to the

data acquisition procedure, sampling occurred with some jitter. The data

of this appendix are plotted as though samples were acquired at intervals

of 10 msec, 10 msec, and 12 msec, respectively.

Figures A-1 through A-5 and A-11 through A-22 are plots of conductivity

vs. time with conductivity in mS/cm.
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APPENDIX B

COMPUTATION OF PARTIAL DERIVATIVES OF SALINITY*

The Practical Salinity Scale adopted by the Joint Panel on Oceanographic Tables

and Standards provides a means of relating temperature, T, conductivity, C,

pressure, P, and salinity, S, of seawater. An algorithm for computing salinity
11

from the other parameters is presented by Gieskes. The following development

results in an algorithm for computing the first partial derivatives of salinity

with respect to temperature and conductivity at constant pressure for use in eq.

(68) et seq. The notation of Geiskes is followed.

The salinity function S(P,T,C,) may be written

S=So + AS (BI)

where

5
SO= - i Ri/2 (82)

i=o

and AS = T - 15 bi Ri/2 (B3)
1 + k[T-157 i=o

= TCT) bjRi/2 = T(T)ob
i=o

The parameter R is given by

R=  R (B4)Rp rt

*Note that S is used to represent salinity in this appendix while 8 is used in
the main body of this report.

139



I
I

with

R = R(c)= C , CO = 42.914 mS/cm I
Co

and m
R = R (TPC) = I + C(P(6)p p4 B(T) + A(T)R(C)

rt = r(T) = C iT
1

--o I

The differential of S is

dS = S . dP + 9S . dT + aS . dC (B7)
aP aT C

However neglecting the effect of pressure, we have dP 0 so that I
dS = aS . dT + aS . dC (B8)

aT aC

We will evaluate these terms independently. 1
The temperature term is

as = aso + a (AS) (B9)
aT aT aT

Again, evaluating separately, we have n
5

aS o = { ai Ri/2 BIO)
8T aT i (m

5

= a °+ I at R/2
aT i=1 }

I { at.i R/2
t=1 BT

= i R(1/2-1) i/2 BR} = ..BR £
i=1 9T BT
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where 5

cc ai . 1/2 .RCI/2-1 ) (Bl)

1=1

Then 5

a (AS)=r (T)1 b iRRi/2
L.. aT -i o

+ T(T) a bi R
-a- i--o 5 B12)

5

T -15 JIIbIR 1/2
+ k(T-1) LI + k(l-15)- i:0

5 (1/2-1)+ -r(T)[I i( R (2-) aR

1 } b  + T(T)8 aR

[I + k(T-15)j2 aT

Thus

aS = .R + Bt(T) aR + ab
aT aT aT [I + k(T-15)] i

(B13)

- + B (T)) aR + Ob

aT Ti + k(T-15)J2

Next we evaluate aS
ac

as as0  + a (As) (B14)

as : ao a

Now

aR 
(B]5)

4ac
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as shown before for BSo . Likewise

8T

a. (AS) = _ [t(T) . ob] : rCT) aob (816)
ac ac ac

aC

Thus3

aS = (- + OT(T)) aR (B17)ac a I

It now remains to evaluate the partial derivatives of R with respect to C and T. 3
aR = [ R

ac aC Rprt (B18)

R p r t 8 C 
c 

B R r r t 2 2  + R a r t 1

= 1 BR R Rp + 1 art} I
Rprt aC Rp ac rt BC-i"

= R 1 8R 1 BRp 1 art
Rprt R aC Rp BC rt BC

and so I
BR R 1BaR I R _ 1 BRr
BC R BC Rp aC rt BC (B19)

But since rt is not a function of conductivity, C.

-kr oI
ac

(B20)
and I

BR -R 1 BRp
BC R BC Rp BC

14I
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Similarly, we have

R = R {I 1 BR 1 p 3r t I
ac R R T rt T (B21)

-R _B~p+ I ar
R p T + t 8T}

since R = R(C).

Further evaluating, we have

aR = a C =
ac BE Co f

Rp =P . A(T) . (822)
ac [8(T) + ACT) . R(C)j 2  To

- -C(P)A(T)
Co LB(T) + ACT) R(C)J2

= -ACT) . (Rp- l)
c. L(T) + A(T)R(C)J

-A(T) . (Rp- 1)2

Co C(P)

Thus

8R = R{ i 1 1 -A(T )  (R 1 )2 1

ac C o - Rp Co C(P) }

= 1 + A LT) . (R 2-) }

C Coc(p) Rp' (B23)

= 0o I .A(T)
C R 1Rp
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with
1=t I

I = _c(P)
LBCT) + ACT)R(C)j 2m

Finally, evaluating R ,we haveaT

RP iC( ) 2 L OCBT) R(C) aLT (624)
aT LB(T)+ T)R(CC)T2 aT a

and, since 3
ACT) = d3 + d4T

B(T) = 1 + dIT + d2T2

we have

aA = d4
aT

and 5
aB = dI + 2d2T

Therefore 
aT

ap-( [dl +2d 2 T+ R(C)d4]aT +(T)+AT)R(C) (B26)

= j(P,T,C) [d1 + 2d2T + R(C)d4 ] m
and 4 m

arT = a { CiT t

aT aT i=0

i .C .T I - I  =p(T)

I
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Thus

8R -1 . [d 1 +2d 2T + R(C)d 4 ]

+ 1 PT) (B29)

Rrt

Algorithm

In summary, we must compute the following, with constants as given by Gieskes11 :

C(P) = P(e1 + e2P + e3p
2 ),

B(T) = 1 + dIT + d2 T2 ,

ACT) = d3 + d4T,

R(C) = C /C o,

j(P,T,C) - -C(P)
LBCT) + A(T)R(CC)j2

Rp = +. C(P)1B(T) + A(T)R(C)J

rt = CtTi 9

i=o

P = I C1 Ti - 1 
9

i=1

R(C) ,
Rp rt

aR -R {-L [dl + 2dT + R(C)d4 ] 9
-T Rp rt
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5R 14 T

8i ()R U ,

B = bi (-) R( -1) ,

1=1 2

T - 15 , I
1 + k(T - 15)

ob  = bi R /2,

1=0

with P in decibars, T in degrees Celsius, and C in Siemens/cm. We then may com-
pute

as = (9+B0T) .BR

and

as = (c + 0 T) . IR + Ob
"T aT Li + k(T-15)J"

Data arrays required to store the constants from Geiskes are

Si, i = 0, 1, ... , 5 I
bl, 1 = 0, 1, ... , 5

cl, i = 0, 1, ... , 4

di, i = 1, **of 4

ei, 1 1, 0.. 3

k = 0.01623

co = 42.914
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ESTIMATION OF VARIANCE IN SALINITY
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APPENDIX C

ESTIMATION OF VARIANCE IN SALINITY* l

Consider simultaneously sampled sequences of temperature and conductivity, {Tj} !
and {Cj}, j = i, ..., N, taken at constant pressure, from which a salinity

sequence {Sjl is constructed. The variance of each sequence is

N N

0T "  = 2 1 &T Arj', (Cl)T j=l J J=l 1

N -aC 1 & A 2 ~ (C2)5
Sj=1

and 1
N

°S j=1

where 1
AT (T (- T (C4)

T is the mean of the temperature sequence 5
N

T i1 T (C5)
K J=l

and ACj and ASj are similarly defined. To a first approximation I

AS as I AT + asAC (C6)3

T T T=T
CC C=CI

*Note that S is used to represent salinity in this appendix while e is used in

the main body of the report. 1 1
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Squaring, we have

as12=(S T OEMt &T 1  2ST (ftf) Sc(f,T) I&T ACJ (C7)

+ ( ?TA

with

S5T(T,?!) as (C8)

and

SCrX) =as (C9)

Then

j

LN j

+ 2sc(TX)sT(TU) 1 A Ac

+ S 2c U) 
AcJ2

S Sr2cTtU) YT2 + 2c (U,)STCTo) ATj Ac]

+ S 2"(T,U) o
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Now

jT / (Cil)

-,f ATAC p(ATI AC) d(AT) d(AC)
all AT,AC

for large N, where p(AT AC) is the joint probability density for AT and AC.

If we assume that the AT and AC are m
1) Uncorrelated and 3
2) Symmetrically distributed

Then m
f./ ATAC p(AT AC) d(AT) d(AC) = 0. (C12)
all ATAC

Thus

1 ATAbC - 0I19j

So that S

a S. S T 2 Tc + c I

I
I
I

I
I

1,o 1

IIIII IU
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APPENDIX D 1

POWER SPECTRUM OF SALINITY

Consider a time series of salinity, 8(t) , which consists of perturbations,

A B(t) from some average value, eo . The perturbations are due entirely to per- 1

turbations in temperature, AT(t), and conductivity, AC(t) . Thus

B(t) = 8o + Ae(t) (Dl)

= 0 + {8T AT(t) + ec AC(t)} , (D2)

where @T and 8 c are the first partial derivatives of salinity with respect to 3
temperature and conductivity, respectively, given by eqs. (79) and (80). The

perturbation times series, A 0(t) , is a continuous, zero-mean function whose 3
Fourier transform and power spectrum are well-behaved.

The Fourier transform of the salinity time series is I
F(1 = F{8 } + F{A8} , (03)

where F{x} represents the Fourier transform operating on the time series X. The 1

Fourier transform of the constant first term in the RHS of eq. (03) is a Dirac

uelta function at zero frequency

F{80} 6(f/e O) . (D4)

Recalling from eq. (39) that the single-sided power spectrum of a function is

given by twice the product of its Fourier transform with the conjugate, the I
power spectrum of the salinity time series, may be written as

PSD{8} = PSD{e 0 + 26(f/8O) [F*{A8} + F{AB} (D5)

+ PSD{A I
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For frequencies greater than zero, the first two terms in the RHS of eq. (D5)

vanish, so that

PSD{O) - PSD{ABI = F*{A8} F{AO). (D6)
By virtue of the addition theorem for the Fourier transform, the Fourier trans-

form of the salinity function is

F{8) = 8T F{AT} + 8c F(AC}. (07)

Then

PS{e) = 2 8T2 F*{AT} F{AT) + 2 eC2 F*{AC} F{AC}

+ 2 eT 6c [ F*(AT} 1{A£} + F*{AC} F{T)N]. (D)

The Fourier transform may be written in polar form, as may any complex function,

F{x) = ax e 
(D9)

Where ax is the (real) modulus of F and *x is the (real) phase angle. Using

this notation, the third term in the RHS of eq. (De), may be expanded to yield

F*{AT) F{AC} aw e14c a e-iAT A e+i(OAC - AT) (D)

and

F {AC) F({T) = SAC aAT e , (D11)

so that

F*{AT} F{AC} + F*{AC} F{AT} = 2 ACaAT cosE4AC - JT]" (D12)

Then, substituting into eq. (08) the salinity spectrum becomes

PSO{)e = eT2  PSO{AT} + aC2 PSD{AC}

+ 2 8C 6T VPM AT) I t&C cOS[fAC - *AT]. (013)
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I
Finally, by an argument similar to that employed to obtain eq. (D6), it may be

shown that for non-zero frequencies

PSD(T) . PSD{AT} (D14) I
and

PS0{C) - PSD{ACJ (D15)

Then for frequencies greater than zero, the salinity spectrum is

PSD{B) = BT2 PSD{T} + BC PSDC) 3

The third term in the RHS of eq. (D16) may be thought of as a cross term which

adds to the salinity spectrum or subtracts from it at any given frequency, I
depending upon the relative phases of the temperature and conductivity at that 3
frequency. Equation (D16) is useful for determining order of magnitude esti-

mates for the salinity spectrum. Generally, one might expect the spectra of

temperature and conductivity to be comparable in magnitude. Likewise, in

Section 3.3 it is shown for temperature and conductivity ranges of interest that I
eT and Bc are comparable in magnitude. Thus, the term 2 BC @T /PM[TI PSD{CI

is comparable in magnitude to the sum of the first two terms in the RHS of eq.

(D16). Since the cosine term will vary from +1 to -1 as the phase difference

varies from -w to +v, it may be seen that PSD{0) varies from a maximum value

PSDmax() 7 2[BT' PSD{T} + C2 PSD{C}] (017)

to approximately zero. A median value for use as an order of magnitude estimate I
is3
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PS 617eT2PSD{TI + e C Pso{cl. (D18)

converting to the notation used in the body of the report for discrete power
spectrum, eq. (018) becomes the order of magnitude estimate of eq. (82),

9s (kf) 7 e T 2 9 T (khf) + BCZ (EJ) 9C (kAf). (019)
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